Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Yi Bai,^a* Chen-Fang Zhang,^a Xin-Ying Qin,^a Yue-Cheng Zhang^b and Tao Zeng^b

^aCollege of Chemistry and Environmental Science, Hebei University, Hebei 071002, People's Republic of China, and ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study T = 113 K Mean σ (C–C) = 0.002 Å R factor = 0.059 wR factor = 0.130 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(R,S)-2,2'-(Ethane-1,2-diyldiimino)dibutan-1-ol

The title compound, $C_{10}H_{24}N_2O_2$, was synthesized by *N*-alkylation of 1,2-dichloroethane with racemic 2-amino-1butanol. The molecule lies on a crystallographic inversion center and the crystal structure is stabilized by intermolecular $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds. Received 18 August 2006 Accepted 28 August 2006

Comment

Ethambutol hydrochloride is a widely used chiral antitubercular agent (Fadnavis *et al.*, 1999). The title compound, (I), is the *meso* isomer of (S,S)-ethambutol (Bai *et al.*, 2006), a precursor of ethambutol hydrochloride.

The molecular structure of (I) is shown in Fig. 1. There is a center of inversion at the mid-point of the central C---C bond. All bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The crystal structure is stabilized by intermolecular $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds (Fig. 2 and Table 1).

Experimental

The title compound was prepared according to the procedure of Bai *et al.* (2004) using racemic 2-amino-1-butanol and 1,2-dichloroethane

Figure 1

© 2006 International Union of Crystallography All rights reserved The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. [Symmetry code: (i) -x, 2 - y, -x.]

as reagents. Colorless single crystals were grown by slow evaporation of a methanol solution of (I).

Z = 2

 $D_r = 1.159 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$

T = 113 (2) K

 $R_{\rm int}=0.049$

 $\theta_{\rm max} = 26.0^{\circ}$

Block, colorless

 $0.12 \times 0.08 \times 0.04 \text{ mm}$

5952 measured reflections

1157 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0573P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.1608P]

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$

1035 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} C_{10}H_{24}N_2O_2\\ M_r = 204.31\\ \text{Monoclinic, } P2_1/n\\ a = 4.6334 \ (13) \text{ Å}\\ b = 5.4777 \ (14) \text{ Å}\\ c = 23.161 \ (2) \text{ Å}\\ \beta = 95.336 \ (6)^\circ\\ V = 585.3 \ (2) \text{ Å}^3 \end{array}$

Data collection

Rigaku Saturn diffractometer ω scans Absorption correction: multi-scan (Jacobson, 1998) $T_{\min} = 0.979, T_{\max} = 0.997$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.130$ S = 1.201157 reflections 73 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O1 ⁱ	0.90 (2)	2.33 (2)	3.163 (2)	152.9 (16)
$N1 - H1 \cdots O1$	0.90(2)	2.444 (19)	2.9051 (19)	112.1 (14)
$O1 - H6 \cdot \cdot \cdot N1^{ii}$	0.87 (3)	1.95 (3)	2.810 (2)	172 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z.

H atoms bonded to N and O atoms were located in a difference Fourier map and refined isotropically. H atoms bonded to C atoms were positioned geometrically and refined using the riding-model approximation, with C-H = 0.99–1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 2

Part of the crystal structure of (I), with hydrogen bonds shown as dashed lines.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CrystalStructure* (Rigaku/MSC, 2005); software used to prepare material for publication: *CrystalStructure*.

Financial support by the Science Project of the Hebei Education Department (grant No. 2005350) and the Science Foundation of Hebei University (grant No. 2005046) is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bai, G. Y., Chen, L. G., Xing, P., Li, Y. & Yan, X. L. (2004). *Fine Chem.* **21**, 943–945.
- Bai, G.-Y., Zhang, C.-F., Zhang, Y.-C., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, 02173–02174.
- Fadnavis, N. W., Sharfuddin, M. & Vadivel, S. K. (1999). Tetrahedron Asymmetry, 10, 4495–4500.
- Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalStructure (Version 3.7.0) and CrystalClear (Version 1.36). Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.